Exploring the energy profile of human IgG/rat anti-human IgG interactions by dynamic force spectroscopy.

نویسندگان

  • Zhengjian Lv
  • Jianhua Wang
  • Guoping Chen
چکیده

Interactions between antibody and antigen molecules play essential roles in biological recognition processes as well as medical diagnosis. Therefore, an understanding of the underlying mechanism of antibody-antigen interactions at the single molecular level would be beneficial. In the present study, human immunoglobulin (IgG) tethered cantilevers and rat anti-human IgG functionalized gold surfaces were fabricated by using self-assembled monolayers method. Dynamic force spectroscopy was employed to characterize the interactions between human (IgG) and rat anti-human IgG at the single-molecule level. The unbinding forces were determined to be 44.6 ± 0.8, 65.8 ± 3.0, 108.1 ± 4.1, 131.1 ± 11.2, 149.5 ± 4.7, 239.5 ± 3.1 and 294.7 ± 7.7 pN with ramping loading rates of 514, 1,127, 3,058, 7,215, 15,286, 31,974 and 50,468 pN s(-1), respectively. In addition, the unbinding forces were found to be increasing with the logarithm of apparent loading rates in a linear way. Fitting data group resulted in two distinct linear parts, suggesting there are two energy barriers. The corresponding distances in the bound and transition states (x ( β )) and the dissociation rates (K ( off )) were calculated to be 0.129 ± 0.006 nm, 3.986 ± 0.162 s(-1) for the outer barrier and 0.034 ± 0.001 nm, 36.754 ± 0.084 s(-1) for the inner barrier. Such findings hold promise of screening novel drugs and discerning different unbinding modes of biological molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing Specific Interaction Forces Between Human IgG and Rat Anti-Human IgG by Self-Assembled Monolayer and Atomic Force Microscopy

Interaction forces between biological molecules such as antigen and antibody play important roles in many biological processes, but probing these forces remains technically challenging. Here, we investigated the specific interaction and unbinding forces between human IgG and rat anti-human IgG using self assembled monolayer (SAM) method for sample preparation and atomic force microscopy (AFM) f...

متن کامل

تولید آنتی بادی بر ضد IgG انسانی در خرگوش: مقایسه دو روش تزریق داخل ماهیچه ای و زیر جلدی

Background and objectives: Anti-human immunoglobulin G (IgG) antibody is produced against human IgG in various laboratory animals. The present study tried not only to produce anti-human IgG, but also to assess different antigen injection techniques leading to optimal production of anti-human globulin.Methods: The antibody was separated from human serum using precipitation method with sodium sul...

متن کامل

Measurement of Affinity Constant of Anti-human IgG Monoclonal Antibodies by an ELISA-based Method

Background: The affinity of an antibody to its antigen is a crucial parameter in its biological activity and performance of an immunoassay such as ELISA. Affinity of most IgG specific MAbs are often determined by methods which require labeling of either antigen or antibody, and are sometimes difficult to control, do not always lead to the expected signal and often result in immunological modifi...

متن کامل

Inhibition of IL-13 by Antisense Oligonucleotide Changes Immunoglobulin Isotype Profile in Cultured B-Lymphocytes

The link between IL-13 and bronchial hyper-responsiveness has brought this cytokine as a potential therapeutic target for asthma and allergic diseases. At the present study, we address the role of B cell derived IL-13 in the IgE and other immunoglobulin development. Antisense oligo for human IL-13 m-RNA was used to study IgE down regulation. Human B-lymphocytes were purified by positive selecti...

متن کامل

Glycation of Human IgG Induces Structural Alterations Leading to Changes in its Interaction with Anti-IgG

Background: Glycation of proteins is a non-enzymatic spontaneous process that occurs in diabetes mellitus and aging, altering the structure and function of proteins. IgG undergoes glycation leading to changes in its reactivity to antigen and fixation of complement.   Objective: This study aimed at revealing the effect of glycation on the interaction of IgG with anti-IgG using electroimmunoassay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The protein journal

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2012